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Abstract: The dynamic development of the Internet of Things infrastructure contributes to the need for a new
look at the methods of protecting information transmission. Most modern systems were designed for devices with
easy access to power. Very often the Internet of Things devices have both limited computing power and very
limited energy resources. These conditions contribute to the need to optimize the computing costs of algorithms
which ensure communication protection. The purpose of the following work is to provide a concise introduction
of the properties of certain algebraic groups generated by the most popular elliptic curve subfamilies and a
comparison of the computational costs of the arithmetic operations of adding and doubling points in these groups.
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Introduction

Nowadays, the development of a new infrastructure has
changed all areas of our functioning – which is the Internet
of Things. Its market in the first two quarters of 2018 re-
corded a dynamic increase, exceeding in total 7 billion IoT
devices in use [1].

Fig. 1: Total number of active device connections worldwide [1].

According to the latest International Data Corporation
(IDC) reports, the Internet of Things market is growing
at a rate of around 20% yearly. And in 2020 its value is
estimated to exceed one trillion US dollars. In 2021, 16 out
of 28 billion devices connected to the Internet will be IoT
devices.

On the basis of the recent investor’s presentation, glo-
bal data traffic is expected to grow at 45%. IoT spen-
ding in Central and Eastern Europe will record a five-year
compound annual growth rate (CAGR) of 18.1% between
2017 − 2022 with expenditures surpassing 22 billion USD
in 2022 [1].

Due to the rapid development of the Internet of Things
technology developers of modern devices point to its new
possibilities of innovative use in various areas.

In the article [2], the authors present the most important
areas of applications of the Internet of Things, among which
there are such areas as: construction, healthcare, industry
and production, transport, public safety and IT systems.

In addition to many positive aspects, there are also thre-
ats. Rapidly developing technology requires us to look for
better protection of our data – which is transmitted more
often on the Internet and becomes more threatened by va-
rious attacks.

Frost and Sullivan’s recently analyzed Global Industrial
Cybersecurity Services Market. Companies that are eager
to grow within the industrial cybersecurity market can find
opportunities through [3]:

• Providing integrated platforms that can deploy a range
of services to enhance the security posture of end
users while incorporating the best security practices.

• Using automated management services and advanced
analytics to develop a comprehensive service portfolio
that can be adapted for all types of end users.

• Offering flexible pricing models, such as Cybersecu-
rity as a Service (CSaaS), and lifetime services to in-
crease accessibility across industries at a lower cost.

Description of the problem

A serious problem of security threats to IoT devices
is a consequence of the fact that many of these IoT de-
vices have severe operational limitations on their physical
size and by extension the computational power available to
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Fig. 2: Total number of active device connections worldwide [1].

them. These constraints often make them unable to directly
use basic security measures such as implementing firewalls
or using strong cryptosystems to encrypt their communica-
tions with other devices [4].

The IoT world is based on microcontrollers adapted for
direct cooperation with various external devices, including
those to which the traditional microprocessor would requ-
ire the use of additional peripherals. (As Wikipedia says
a microcontroller is a small computer on a single integra-
ted circuit which contains one or more CPUs along with
memory and programmable peripherals [5].)

At IBM’s Think 2018 conference, the company anno-
unced the creation of the world’s smallest computer that
despite its size and cost (each will cost less than 10 cents to
make) can monitor, analyze, communicate and even act on
data. Each computer can hold as many as one million trans-
istors, while network communication is handled by LEDs,
and a solar cell provides power [6].

Current trends are heading towards the production of
devices with the smallest dimensions, which exclude the use
of high-capacity batteries.

The trend of the constructors of electronic devices is
to minimize energy consumption in order to maximize the
working time of the mobile device after charging or chan-
ging the battery.

Energy efficiency usually requires the microcontroller
mode of the core and as many of the peripheral systems as
possible, to be in sleep mode and at the same time redu-
ced energy consumption and are only awoken for the time of
important tasks. In most modern microcontrollers, periphe-
ral modules, such as communication interfaces and DMA
controllers, work independently of the CPU and are able
to perform certain tasks independently without switching
them on. From the point of view of energy efficiency, it is
very important that they are carried out in the shortest
possible time. Then the average supply current consumed
by the device is little, which contributes to a longer battery
life.

Motivation and methodology

Memory size, power consumption and computational
performance are the most important features of smart IoT
designers that use complex algorithms. The present solu-
tions available usually belong to one of two groups: they
have low power consumption but limited computational ef-
ficiency and memory size or are characterized by higher
power consumption, offering in return more efficient pro-
cessors and more memory.

Securing millions of non-standard devices such as home
thermometers, smart TVs and cars is not a trivial task.
It is somewhat simpler if they have easy stripped down
embedded processors, but often they contain full-fledged
and powerful network-connected operating systems, with
all the security problems those present [3].

Related Work

Modern algorithms are based on so-called computatio-
nally difficult problems. One of the problems computatio-
nally difficult is the problem of factorization grounded on
the asymmetric RSA algorithm designed by Ron Rivest,
Adi Shamir and Leonard Adleman in 1977. Another com-
putationally difficult problems is the problem of discrete
logar on which base Elliptic Curve Cryptography (ECC).
These problems do not guarantee security against attacks
from quantum computers, and the costs of encrypting and
decrypting data, especially in RSA, are so high that it beco-
mes difficult to apply this algorithm to devices with limited
computing resources.

RSA

The RSA algorithm is currently one of the most po-
pular cryptographic algorithms that can be used for both
message encryption and digital signatures. It was designed
by Ron Rivest, Adi Shamir and Leonard Adleman in 1977,
and through the use of two related public and private keys
gave the new possibility of secure communication. The algo-
rithm solves the problem of key distribution characteristic
of symmetric algorithms because the public key is explicit
assumed by future correspondence recipients in the bro-
adcast mode, so that everyone with its use could execute
the ciphertext of the sent message. Decrypting the cipher-
text requires a private key whose only possessor should be
the recipient of the correspondence. The security of RSA
encryption is based on issues of large complex numbers fac-
torization. Despite the growing computational resources of
modern computers, it still gives very high security guaran-
tees. A potential threat to the functioning of this system is
the development of quantum computing; however, in this
article these issues will not be considered; interested readers
should refer to [7, 8].
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Generating keys in RSA

The procedure for generating keys in the RSA algorithm
is carried out according to the following scheme:

1. The choice of two different prime numbers p, q, these
numbers should be chosen at random and consist of
a similar number of bits.

2. The calculation of the product n = p ·q, whose length
is treated as the length of the RSA key.

3. The calculation for n values of the Euler function [9],
using the following form:

ϕ(n) = ϕ(p) · ϕ(q) = (p− 1) · (q − 1) (1)

4. Reconciliation of an integer e, from 1to ϕ(n) so that
the numbers e and ϕ(n) are relatively prime [Number
e is used as the exponent of the public key]

5. Determining the number d that fulfills the condition:
d · e = 1 mod ϕ(n). The number d is used as an
exponent of the private key.

6. The choice of two different prime numbers p, q, these
numbers should be chosen at random and consist of
a similar number of bits.

7. The calculation of the product n = p ·q, whose length
is treated as the length of the RSA key.

The public key consists of the module n and the public
exponent e, while the private key consists of the same mo-
dule n and the private exponent d [7].

Many users can share the value of e. It is recommen-
ded that its length should be relatively short, due to the
fact that its complexity is significantly dependent on the
complexity of calculations during message encryption. The
often accepted value of the number e is the first number
216 + 1 (that is 65537). It is also possible to use much more
smaller numbers (for example, 3), but under certain cir-
cumstances, this weakens the quality of the security.

Encryption is done using the public key (n, e). The
message must be divided into parts, then each part should
be changed to a number (which must be greater than 0
and less than n). In practice, the message is divided into
fragments, each of which consists of a certain number of
bits. Then every number included in the message is raised
to the power of modulo n :

ci = me
i mod (n) (2)

The RSA algorithm can be used repeatedly (using dif-
ferent keys) to encrypt a given message, and then decrypt
it in any order. The result will always be the same, regar-
dless of the order of operations. However, you should not
encrypt messages in this way more than twice, because then
susceptibility to attacks grounded on the Chinese Remain-
der Theorem has been revealed [10,11].

Encryption can also be carried out using a private key.
The entire procedure is identical to the one described above,
with the difference that you will need to use the private key
(n, d) for encryption. However, the recipient of the message
will have to use the corresponding public key to decrypt
the message [10].

Decryption is done using the private key (n, d) The
cipher consists of consecutive numbers, less than n. Each
number included in the ciphertext is raised to a power equal
to d modulo n :

mi = cdi mod n (3)

The received numbers of plaintext must be connected in the
correct order to create the original message. If the message
is encrypted with a private key, you will need to use the
corresponding public key to decrypt the message. The de-
cryption procedure is identical to the one described above,
with the difference that the public key (n, e) is used.

Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC),which is a group
of asymmetric cryptography techniques based on the ari-
thmetic function of elliptical curves in finite bodies appro-
ach [12–14], was introduced independently by two resear-
chers, Neal Koblitz and Victor S. Miller in 1985.

An elliptic curve E over a field F can be given by the
Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (4)

where the coefficients ai ∈ F. The canonical short Weier-
strass form of an elliptic curve is given by the equation:

y2 = x3 + ax+ b, (5)

together with a point at infinity O where the constants a, b
meet the additional condition:

4a3 + 27b2 6= 0. (6)

The algorithm of adding points on the elliptic
curve

Let E be an elliptic curve, and M1,M2 ∈ E, where
M1 = (x1, y1), M2 = (x2, y2), M3 = (x3, y3) and M3 =
M1 +M2, [15, 16] then:{

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1
, (7)

where:

λ =


y2 − y1

x2 − x1
if (x1, y1) 6= (x2,±y2)

3x2
1 + a

2y1
if (x1, y1) = (x2,±y2)

. (8)
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Remark It is easy to show that along with the afo-
rementioned operation of “addition”, and “a point at infi-
nity”, elliptic curve E is an Abelian group.

Security ECC is based on the computational complexity
of discrete logarithms on elliptic curves – Elliptic Curve
Discrete Logarithm Problem (ECDLP).

There is also an ECDSA algorithm for digital signature
based on ECC [17].

Fig. 3: Elliptic curve y2 = x3 + 5x+ 1

Introduction to Edwards curves

Consider classical circle group:

x2 + y2 = 1 (9)

and two points P1 = (x1, y1), P2 = (x2, y2) on it. Let α1

and α2 be the angles such that:

P1 = (x1, y1) = (sinα1, cosα1), (10)

P2 = (x2, y2) = (sinα2, cosα2). (11)

The sum P3 = P1 +P2 is a point on the circle with coordi-
nates (x3, y3), where:

x3 = sin(α1 + α2) =

= sinα1 cosα2 + sinα2 cosα1 = x1y2 + x2y1, (12)

y3 = cos(α1 + α2) =

= cosα1 cosα2 − sinα1 sinα2 = y1y2 + x1x2. (13)

Therefore the addition formula for points on the circle of
radius 1 is [18]:

(x1, y1) + (x2, y2) = (x1y2 + x2y1, y1y2 + x1x2) (14)

Fig. 4: Addition in classical circle group [18].

Edwards curves

Definition. Let K be a field with char(K) 6= 2. Then an
Edwards curve E over K is a curve:

x2 + y2 = 1 + dx2y2, (15)

where d ∈ K \ {0, 1}.

Fig. 5: Edwards curves for d ∈ {0,−2,−10,−50,−200} [19].

Edwards addition law

Let E be an Edwards curve over a finite field K and
char(K) 6= 2. Let M1 = (x1, y1) and M2 = (x2, y2) be
points on E. We then define M3 = M1 +M2 as [20]:

M3 =
(

x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − x1x2

1− dx1x2y1y2

)
, (16)

and similarly define M4 = 2M1 as:

M4 =
(

2x1y1

1 + dx2
1y

2
1
,
y2

1 − x2
1

1− dx2
1y

2
1

)
. (17)

This addition law was proven correct in [21].
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Result 1. The zero element of the Edwards addition law is
(0; 1).

Proof Let M = (x, y) and O = (0, 1). Then, from the
addition law,

M +O = (x, y) + (0, 1) =

=
(

x+ 0
1 + d · 0

,
y − 0

1− d · 0

)
=

= (x, y) = M (18)

Result The inverse of any point (x1, y1) is (−x1, y1).

Twisted Edwards curves

Bernstein, et. al. in [21] introduced twisted Edwards cu-
rves which are curves of the form:

ax2 + y2 = 1 + dx2y2, (19)

where a, d ∈ K are distinct and nonzero [22, 23]. The po-
int M3 = M1 + M2 can be determined using the following
formula [24]:

M3 =
(

x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − ax1x2

1− dx1x2y1y2

)
, (20)

and similarly:

M4 = 2M1 =
(

2x1y1

1 + dx2
1y

2
1
,
y2

1 − ax2
1

1− dx2
1y

2
1

)
. (21)

Fig. 6: A twisted Edwards curve of equation 10x2 + y2 = 1 + 6x2y2

Montgomery curve

A Montgomery curve over filed K is an elliptic curve
defined by an affine equation:

by2 = x(x2 + ax+ 1), (22)

where a2 6= 4 and b 6= 0 are parameters in K [25].
Let M be an Montgomery curve over a finite field K.

Let M1 = (x1, y1) and M2 = (x2, y2) be points on M. We
then define M3 = (x3, y3) = M1 +M2 [26] where:

x3 =
B(x2y1 − x1y2)2

x1x2(x2 − x1)2 , (23)

y3 =
(2x1 + x2 +A)(y2 − y1)

x2 − x1
− B(y2 − y1)2

(x2 − x1)
. (24)

and similarly define M4 = (x4, y4) = 2M1 as:

x4 =
(x2

1 − 1)2

4x1(x2
1 +Ax1 + 1)

(25)

y4 =
(2x1 + x1 +A)(3x2

1 + 2Ax1 + 1)
2By1

+

− B(3x2
1 + 2Ax1 + 1)3

(2By1)3 − y1. (26)

Montgomery’s curves and twisted Edward’s curves co-
ver the same set of elliptic curves. More precisely, for each
Montgomery’s curve there is a birationally equivalent twi-
sted Edward’s curve, and vice versa. Here a birational equ-
ivalence between two elliptic curves M , E is a pair of ra-
tional maps M → E and E →M that are correctly defined
almost everywhere [27].

Fig. 7: Montgomery curve of equation 5y2 = x3 + 8x2 + x.

Hessian curves

A Hessian curve over a field K is given by the cubic
equation:

x3 + y3 + 1 = dxy, (27)

for some d with d3 6= 27 [28].

Let c, d be elements of K such that c 6= 0 and d3 6= 27c.
The generalized Hessian curve over K is defined by the
equation:

x3 + y3 + c = dxy. (28)
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Fig. 8: Hessian curve x3 + y3 = 1 + 4xy.

The sum of two (different) points (x1, y1), (x2, y2) is the
point (x3, y3) given by:

x3 =
y2

1x2 − y2
2x1

x2y2 − x1y1
; y3 =

x2
1y2 − x2

2y1

x2y2 − x1y1
. (29)

The doubling of the point (x1, y1) is the point (x3, y3) given
by:

x3 =
y1(c− x3

1)
x3

1 − y3
1

; y3 =
x1(c− y3

1)
x3

1 − y3
1
. (30)

Theorem 1. Let E be an elliptic curve over a field K. If
the group E(K) has a point of order 3 then E is isomorphic
over K to a generalized Hessian curve. Moreover, if K has
an element ω with ω2 + ω + 1 = 0, then the group E(K)
has a point of order 3 if and only if E is isomorphic over
K to a generalized Hessian curve.

The proof of the theorem can be found in [28].

Jacobi quartic curves

A Jacobi quartic form elliptic curve over K is defined
by

y2 = x4 + 2ax2 + 1 (31)

where a ∈ K with a2 6= 1. Birational maps between Weier-
strass and Jacobi quartic curves can be found in [29].

Let J be a Jacobi quartic curve over a finite field K.

Just as before let M1 and M2 be points on M. The point
M3 has coordinates:

x3 =
x1y2 + y1x2

1− x2
1x

2
2

y3 =
(y1y2 + 2ax1x2)(x2

1x2 + 1) + 2x1x2(x2
1 + x2

2)
(1− x2

1x
2
2)2

.

The identity element is the point (0, 1). The negative of a
point (x, y) is (−x, y) [30].

Doubling-oriented Doche – Icart – Kohel curves

Let K be a field and let a ∈ K. Then, the Doubling-oriented
Doche – Icart – Kohel curve with parameter a in affine
coordinates is represented by:

y2 = x3 + ax2 + 16ax (32)

This curve is a special case of Weierstrass form. The curve
was introduced in 2006 Doche - Icart - Kohel. The parame-
ter a is required to have a(a−64) 6= 0. The neutral element
of the curve is the unique point at infinity.

Comparison of computing costs in filed K = Fp.

Table 1 compares the computational costs related to the
operation of adding or doubling points. A field inversion
is abbreviated by I, a multiplication in Fp by M. It was
assumed that the costs of addition and multiplication are
the same, and I = 100M.

Table 1: Comparison of computing costs in filed Fp [24, 30].

curve ADD DBB 

Short Weierstrass  14 11 

Edwards 10 7 

Twisted Edwards 9 8 

Montgomery - 4 

Hessian 12 9 

Jacobi quartic 14 7 

Doche – Icart –  Kohel 17 7 

 

Key size Key size 

ratio RSA/DSA ECC 
1024 16 7:1 
2048 224 10:1 
3072 256 12:1 
7680 384 20:1 
15360 521 30:1 

 

Key size Security 

Level 

(bits) 

Ratio of 

Cost RSA/DSA ECC 

1024 16 80 3:1 

2048 224 112 6:1 

3072 256 128 10:1 

7680 384 192 32:1 

15360 521 256 64:1 

 

Comparison of ECC and RSA

Tables 2 and 3 compares the elliptic curve cryptography
(ECC) algorithm and the Rivest – Shamir – Adleman (RSA)
algorithm.

Table 2: Key size ratio for RSA/DSA and ECC with equivalent security
level [31].

curve ADD DBB 

Short Weierstrass  14 11 

Edwards 10 7 

Twisted Edwards 9 8 

Montgomery - 4 

Hessian 12 9 

Jacobi quartic 14 7 

Doche – Icart –  Kohel 17 7 

 

Key size Key size 

ratio RSA/DSA ECC 
1024 16 7:1 
2048 224 10:1 
3072 256 12:1 
7680 384 20:1 
15360 521 30:1 

 

Key size Security 

Level 

(bits) 

Ratio of 

Cost RSA/DSA ECC 

1024 16 80 3:1 

2048 224 112 6:1 

3072 256 128 10:1 

7680 384 192 32:1 

15360 521 256 64:1 

 

The use of ECC in devices with limited resources has
a significant advantage over RSA. Cryptography based on
elliptical curves gives greater security guarantees and at
the same time reduces computational costs, but requires
constant improvement to satisfy the limitations of newly
designed systems.
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Table 3: Security level(bits) and ratio of cost for RSA/DSA and ECC with
equivalent security level [31].

curve ADD DBB 

Short Weierstrass  14 11 

Edwards 10 7 

Twisted Edwards 9 8 

Montgomery - 4 

Hessian 12 9 

Jacobi quartic 14 7 

Doche – Icart –  Kohel 17 7 

 

Key size Key size 

ratio RSA/DSA ECC 
1024 16 7:1 
2048 224 10:1 
3072 256 12:1 
7680 384 20:1 
15360 521 30:1 

 

Key size Security 

Level 

(bits) 

Ratio of 

Cost RSA/DSA ECC 

1024 16 80 3:1 

2048 224 112 6:1 

3072 256 128 10:1 

7680 384 192 32:1 

15360 521 256 64:1 

 

Summary

The work discusses groups of curves useful in cryptogra-
phy. Many of these curves also have their representations
in pro- jecting spaces. As shown above, elliptic curve cryp-
tography is a viable alternative to RSA. The continuous
development of the popularity of IoT devices requires sear-
ching for new solutions in order to increase security while
reducing energy consumption.

Literature

[1] Maleszewski W. Algebraic geometry in cryptography
at the turn of the xx–xxi century. Polish Journal of
Applied Sciences, 2(1):11–15, 2017.

[2] Rot A., Blaicke B. Bezpieczeństwo internetu rzeczy.
wybrane zagrożenia i sposoby zabezpieczeń na przy-
kładzie systemów produkcyjnych. Zeszyty Naukowe
Politechniki Częstochowskiej. Zarządzanie, (26):188–
198, 2017.

[3] De Mello A. Iiot technologies integration creates
growth opportunities in the industrial cybersecurity
industry. https://www.iot-now.com/2018/11/28.

[4] Liu X., Yang Y., Choo K.-K.R., Wang H. Security and
privacy challenges for internet-of-things and fog com-
puting. Wireless Communications and Mobile Compu-
ting, 2018.

[5] https://en.wikipedia.org/wiki/Microcontroller.
[6] Stuecheli J., Starke W.J., Irish JD., Arimilli LB¿,

Dreps D., Blaner B., Wollbrink C., Allison B. IBM
power opens up a new era of acceleration enablement:
Opencapi. IBM Journal of Research and Development,
62(4/5):8–1, 2018.

[7] https://en.wikipedia.org/wiki/RSA˙(cryptosystem).
[8] Rivest R.L., Shamir A., Adleman L. A method for

obtaining digital signatures and public-key cryptosys-
tems. Communications of the ACM, 21(2):120–126,
1978.

[9] Apostol T.M. Introduction to analytic number theory.
Springer Science & Business Media, 2013.

[10] http://www.crypto-it.net/pl/asymetryczne/rsa.html?
tab=1.

[11] Schindler W. A timing attack against rsa with the
chinese remainder theorem. In International Work-
shop on Cryptographic Hardware and Embedded Sys-
tems, pages 109–124. Springer, 2000.

[12] Koblitz N. Elliptic curve cryptosystems. Mathematics
of computation, 48(177):203–209, 1987.

[13] Maleszewski W. Algebraic Geometry in Cryptography
at the turn of the XX–XXI Century. Polish Journal of
Applied Sciences, 2(1):11–15, 2017.

[14] Miller V.S. Use of elliptic curves in cryptography. In
Conference on the theory and application of cryptogra-
phic techniques, pages 417–426. Springer, 1985.
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